Power Use of Disk Subsystems in Supercomputers

Matthew L. Curry
Sandia National Laboratories
Supercomputer Power Use and Exascale

• DOE Plan: First exascale machine will consume up to 20 MW, or 50 GF/W

• The June 2011 Green500 list has a BG/Q prototype as the most efficient machine
 – 2 GF/W
 – In the next decade, machines need to be 25x more power efficient!

• Where can we find more power efficiency?
Memory Hierarchy and Power

• The first reaction is often to look at which operations require the most power
• Disks are far away and (most) have moving parts
• How much power does storage really use for real application behavior?

Diagram:
- Disk (1000 nJ/byte)
- DRAM (0.1 nJ/byte)
- Off-Chip Cache (1 nJ/byte)
- On-Chip Cache (0.1 nJ/byte)
- Reg
A Study of Power in Supercomputing

• Survey three sites with large machines
 – Los Alamos: Roadrunner, #10, and others
 – Los Alamos/Sandia ACES: Cielo, #6
 – Sandia: Red Sky, #16
 – Clemson University’s Palmetto, #96

• Asked for power data from compute and I/O infrastructure separately
 – No cooling, external infrastructure, etc. Just compute, I/O servers, disks.
Los Alamos Description

- Two separate methods of sampling
 - Cielo individually
 - 4.7-6.7 MW
 - 1.1 PF (~143k cores)
 - 10PB of dedicated Panasas storage
 - Secure Computing Environment, which includes Cielo, Roadrunner, capacity clusters, etc.
 - 16.5 MW typical
 - 3.5 PF
 - 20 PB of Panasas storage, with 10PB served to all machines except Cielo via a 10GigE fabric
Los Alamos Results

Cielo Secure Computing Environment

LANL Disks + Storage Servers + SAN

Compute + I/O Forwarding Nodes
Sandia Description

• Red Sky/Red Mesa is the premier capacity platform for Sandia and NREL
 – 3 PB
 – 433.5 PF (~42k cores)

• One rack of storage and compute measured throughout a single day

• Extrapolated to unclassified section of Red Sky, which is approximately 56% of the Red Sky/Red Mesa machine
Clemson Description

• Capacity, condominium cluster at Clemson University
 – 92TF, ~14k cores
 – 616TB

• Data collection at two-hour intervals over two weeks
 – Storage infrastructure used mostly constant power throughout
Clemson Results

- Disks + Storage
- Servers
- Compute
Extrapolating to Exascale

• Exascale storage systems will require 320PB-1EB of storage at 106.7 TB/s
 – 32PB main memory
 – Checkpoint every hour
 – 95% (57/60 minutes) must be spent computing

• Predictions for future disks (~30TB capacity, ~380 MB/s bandwidth) dictate 277k disks!
 – 66% of power budget if power per disk remains constant
Burst Buffer

• Grider has detailed in many presentations a “burst buffer” idea for checkpointing
 – Quickly accept a checkpoint in smaller flash store
 – Bleed flash to slower disk-based storage between checkpoints

• It has been shown that this will work from a purchase price standpoint
 – Power?
Flash Characteristics

• Current flash (e.g., Intel 320 series) can accept 1MB/s per gigabyte of capacity
 – Even today, 90PB of flash (to hold three checkpoints) is sufficient to sustain 90TB/s of bandwidth

• Use 10TB/s disk-based store
 – Requires 25k disks, which may hold 738 PB
 – Extrapolating from today’s disk power, this is 6% of the power budget
 – Flash uses a comparable amount of power, yielding 6.6% of 20MW for disk and flash
Conclusion

• I/O consumes a low proportion of power within the machine
 – 4.4-5.5%
• One exascale storage model, the burst-buffer scheme, can be done with 6.6% of the power budget
• Inefficiencies in the power feed systems of the data center can be a larger consumer of power!
• We should always be on the lookout for ways to be more efficient
 – Especially for workloads that aren’t checkpointing
Acknowledgements

• Authors
 – Lee Ward, Sandia
 – Gary Grider, Los Alamos
 – Jill Gemmill, Clemson
 – Jay Harris, Clemson
 – Dave Martinez, Sandia